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closure are large compared with his own dimen-
sions. The phonons are in an analogous situation.

To obtain a formal proof, consider a cylinder
inscribed into the slab as shown from the side and
from the top in Fig. 1. The vectors El and Ea rep-
resent the quasi-momenta of a phonon incident and
specularly reflected from the wall. As shown in
Ref. 1, the phonon distribution function f(k, X) of
the stationary, but because of the heat flow, non-
equilibrium system has axial symmetry with re-
spect to any line perpendicular to the slab faces.
This means that at the point “A” we have

f(Ely ;):f(k, g, SE)=.f(l"£2’ E)

because f is independent of ¢, and 2 and 6 do not
change in specular reflection.
Consequently, the distribution function found for
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the infinite slab fulfills the boundary conditions of
specular reflection on the walls of the cylinder or
prism, as well as the Boltzmann equation. Hence,
it is the solution of the problem in question. It is
further evident that the distribution function is in-
variant with respect to the introduction of any kind
of specularly reflecting walls as long as they are
perpendicular to the slab boundaries.

It should be noted that the distribution function,
and therefore the conductivity, is independent of
the cross-sectional dimensions of the sample. This
is not true if the reflection is diffuse rather than
specular, or if there is radiative or conductive loss
of heat through the walls. We expect therefore,
the theory to hold best for highly polished samples.

Our thanks are due to J. M. Robinson, Dr. J.
Mennig, and Dr. T. Auerbach for discussions on
the subject and to the Sektion Physik, Universitit
Miinchen, for its hospitality.
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A simple model for the application of the Hellmann-Feynman theorem to the equilibrium

condition for a solid is discussed.

Some concern over the accuracy of charge den-
sities of solids calculated from Bloch functions has
been raised by an article of Wannier et al.' Using
the Hellmann-Feynman theorem, they found a re-
lationship between the charge distribution in a unit
cell of a periodic crystal and the equilibrium condi-
tion for the crystal, which had explosive conse-
quences for “nearly free-electron” metals. How-
ever, Kleinman® has considered in detail the electro-
statics involved in determining the force acting on
a nucleus in a large finite crystal and has concluded
that one must take into account the electronic charge
density and the nuclei near the surface. The plaus-
ibility of Kleinman’s conclusion has been questioned
on the grounds that it is unusual to expect surface
effects to play an important role in the determina-
tion of a bulk quantity such as the equilibrium lat-
tice constant.® The purpose of this paper is to show
explicitly for a simple model that the equilibrium
condition is determined by a surface effect.

Let us consider a classical system of N +1 bodies
at positions x, =an, n=0,1,2, ..., N, each joined

to its nearest neighbors by springs with spring con-
stant K and rest length a,. The potential energy of
the system is then U(a)= 3NK(a - a,)?, so that
dU/da=NK(a - a,). Theanalog of the Hellmann- Feyn-
man theorem for this systemisdU= -7, F,dx, where
F, is the force on the nth body produced by the

rest of the system. Considering the case of uni-
form strain, dx,=nda, we see that dx,=0 and
F,=0for 1 sn<N-1 since these bodies experience
equal and opposite forces from the identically
strained springs on either side. Therefore, we
have from the Hellmann- Feynman theorem

(D’ Alembert’s principle?) dU =~ Fydxy=k(a - a,)

X Nda so that dU/da is obtained exactly in this case
from the force on the body at the end of the chain.
This argument is easily generalized to three dimen-
sions, establishing the role of the surface in the
equilibrium condition.

By introducing springs joining second neighbors
in the chain, we can easily produce a model for the
variation of the lattice constant close to the surface,
analogous to that described in Kleinman’s paper. 2
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The group-theoretical classification of all possible quadrupole arrangements which was
carried out in a previous paper for crystals such as H, and N, is extended here to include CO,

the molecules of which lack a center of symmetry.

It turns out that the quadrupole arrange-

ment in the cubic phase is T4 with axially symmetric quadrupoles. From symmetry consider-
ations of the quadrupoles only, it is shown that a structure similar to the tetragonal D}ﬁ ar-
rangement in ¥ nitrogen cannot be formed in solid CO, in accord with recent experimental re-

sults.

I. INTRODUCTION

In a previous paper! a group-theoretical classi-
fication of all possible quadrupole arrangements
was carried out for crystals such as H, and N,.

In this paper the method is extended to include the
CO crystal, the molecules of which lack a center
of symmetry. Below 61.5 °K, CO is stable in the
so-called a phase, in which the centers of the
molecules are fixed on a fcc lattice. 2 The CO
molecules are ordered in a manner similar to that
of N, except that the symmetry of the former is re-
duced and the appropriate space group is T* instead
of T8, The intermolecular quadrupole-quadrupole
interaction is believed to play a primary role in the
ordering of the molecules.®®

Solid N, is known to have also a high pressure ¥
phase. At 20.5 °K and 4015 atm Schuch and Mills®
found its molecular structure to be body-centered
tetragonal with the space group being Di,‘f . How-
ever, in CO, which has a larger quadrupole mo-
ment, 7 they did not observe a similar structure at
high pressure. In this paper symmetry considera-
tions are used in order to show that it is impossible
for solid CO to have a structure similar to the
tetragonal Dlgf arrangement in solid N, if indeed
quadrupole interactions dominate the intermolec-
ular potential.

II. CLASSIFICATION OF QUADRUPOLE ARRANGEMENTS

The method of classifying all possible quadrupole
arrangements in a crystal by using the theory of
space groups was described in detail in Ref. 1.
This was done by following the method of Opechow -
ski and Guccione® for the classification of spin ar-
rangements in magnetic crystals. As applied to
CO, the classification of quadrupole arrangements

is identical with that given in Ref. 1, except for the
following difference. While a H; or N, molecule

is invariant under inversion and under reflection
and twofold rotations perpendicular to the molec-
ular axis, a CO molecule is not. As a consequence,
a site point group that permits a quadrupole ar-
rangement for H, or N, may not permit such an ar-
rangement in the case of CO, or it may lead to ad-
ditional restrictions in determining the orientation
of the CO molecular axis. Thus, there is no quad-
rupole arrangement in CO if the site point group

is, for example, Cj;, for this group contains in-
version symmetry. For the site point group C,,,
for example, the molecular axis of H, or N, can

be along the rotation axis or perpendicular to either

FIG. 1. Quadrupole arrangement of CO invariant under
T!in a simple crystal generated by Oj. There are four
different orientations of the molecular axis, namely, along
the [111], [111], [11T), and [T11] directions.



